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the magnetic field AA, and whose walls BB are perfectly conducting for x < 0 
and non-conducting for x > 0. Then, when the Hartmann number M 2 1, the 
velocity expressed in terms of the pressure gradient is O(2M-2) when x < 0 and 
O(M-1) when x > 0, so that some shear layer must exist near x = 0. Although 
Yakubenko obtained an exact solution to this problem by means of the Wiener- 
Hopf technique he did not interpret the result physically nor did he produce any 
numerical data. 

Waechter (1966) has recently analysed the flow in the same long duct in which 
there is no pressure gradient, the walls A A  are non-conducting, the wall B at 
y = a, for x < 0 is perfectly conducting and held a t  a potential $o, the wall B 
at y = - a for x < 0 is also perfectly conducting but held at  a potential - $o, and 
both the walls BB are non-conducting for x > 0. In  this case there is no flow in the 
core when x < 0 and therefore no discontinuity in the velocity. However, there is 
a discontinuity at  x = 0 in a#/ay, which necessitates the existence of a layer at 
x = 0 in which the velocity is non-zero. Such a layer was first discussed by 
Moffatt (1964) who examined the case where the wall a t  y = a is perfectly con- 
ducting and held a t  a potential $o for x > 0 and for x < 0 is also perfectly con- 
ducting but held at  zero potential. There has to be an infinitely small insulating 
segment of wall a t  x = 0. The wall at  y = -a is perfectly conducting and held at 
zero potential. Again in this case there is a layer at x = 0, through which a$/ay 
is discontinuous and in which the velocity is non-zero. Moffatt discussed in detail 
the physics of such a layer, through which there is a discontinuity in the electric 
field parallel to it, so that we now have a clear physical picture of what to expect 
when such a discontinuity occurs. However, there were some anomalies in his 
mathematical solution which Waechter (1966) subsequently clarified. 

Alty (1966) examined an altogether more difficult problem; he undertook a 
theoretical and experimental investigation of the pressure driven flow in a square 
duct, of which two walls are highly conducting and two non-conducting, when a 
uniform magnetic field is imposed a t  an arbitrary angle to the walls. By only 
considering the flow when 2M is> 1, by dividing the flow up into various regions, 
which he investigated in turn, and by using some of the results of Moffatt’s 
(1964) analysis he was able to provide an approximate asymptotic analysis in 
which he discovered the existence of thin layers emanating from the corners of 
the duct in the direction of the magnetic field. In  these layers the velocity and 
electric field changed discontinuously, in a similar way to the layers of Yakubenko 
and Moffatt. The existence of these layers was confirmed by the experiments, 
though indirectly from pressure and electric potential measurements at the walls, 
no probes being inserted into the flow. 

The main interest in these studies has been on the curious layers which 
emanate in the direction of the magnetic field from the places where the con- 
ductivity changes. In  each case different layers are found; yet, despite their 
similarities, a complete analysis and description of these layers in pressure or 
electrically driven flows is still awaited. The mathematical difficulty is similar 
to that of analysing MHD duct flows in that two coupled linear partial differential 
equations of second order must be solved (equations (2.4) and (2.5) of Hunt & 
Stewartson (1965)). These equations may be decoupled by increasing their order 
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as shown by Braginskii (1960), though in that case the boundary conditions for 
the various parameters, e.g. velocity and potential, then become coupled, this 
being the method of Moffatt and Waechter. This method is only suitable for the 
simplest boundary conditions and types of boundary. 

The other approach to solving the coupled equations is to add and subtract 
them, as originally performed by Shercliff (1953), and later by Hunt & Stewart- 
son (1965). Then, provided the current distribution along the boundary is 
specified, a solution can be obtained so that the problem becomes the transforma- 
tion of the current boundary condition to that required, e.g. the specification of 
the potential, or matching to a finitely conducting electrode, which in general 
requires the solution of an integral equation, one such being that solved in $2 of 
Hunt & Stewartson (1965). The great advantage of this method, particularly 
when M 9 1, is that one is dealing with an elliptic second-order equation whose 
asymptotic properties are fairly well understood. In this paper we adopt the 
latter approach (suggested by Professor Shercliff) to examine the flow produced 
by various electrode configurations. 

In  $ 2 we examine the simplest situation in which two line electrodes are placed 
opposite and parallel to each other in parallel non-conducting planes; an electric 
current travels between the electrodes and a magnetic field is applied perpen- 
dicular to the planes. Assuming that the flow is laminar, uniform and incom- 
pressible we find an exact solution for arbitrary values of M and an asymptotic 
solution when M B 1. We show that these are identical when M 9 1, and how the 
results may be interpreted in physical terms. We then analyse the flow when the 
electrodes are displaced relative to each other, the magnetic field remaining in 
the same direction; this flow is somewhat similar to that discussed by Alty (1966). 
In  $3  we analyse the flow produced by point electrodes placed in non-conducting 
planes opposite each other, again using an exact and an asymptotic solution. 

These solutions provide striking examples of the kind of layers or ‘wakes’ 
which may be produced in a flow by discontinuities in the electrical boundary 
conditions when a strong magnetic field is applied to the fluid. The attraction of 
these particular layers is that they can be examined experimentally very much 
more easily than those produced by bodies moving through fluids and in a later 
paper it is hoped to publish the results of experiments by Hunt & Malcolm, 
which convincingly demonstrated the existence of these layers. 

2. Two-dimensional electrode configuration 

2.1. The equations 

We consider the steady flow of an incompressible fluid with uniform properties 
driven by the interaction of imposed electric currents and a uniform, transverse 
magnetic field. In  this section we consider two-dimensional situations, in which 
all the physical variable, including pressure, and the boundary conditions are 
functions of x and y only. Therefore any external circuit connected to the con- 
ducting walls of the duct is continuous and unvarying in the z-direction. (This 
condition may be relaxed if the magnetic field due to the applied currents is 
small compared to the imposed magnetic field.) We can apply the same unique- 

45-2 



708 J .  C. R. Hunt and W .  E. Williams 

ness theorem to this situation as was developed by Hunt (1968) for fully developed 
MHD duct flows the only difference being that the pressure gradient dpldz is 
zero. Therefore if we can construct a solution consistent with the boundary 
conditions it is the correct one. We will assume that there is only one component 
of velocity (in the x-direction) and since this assumption provides a solution we 
are justified in making it. Then, using the axes defined in figure 1, the equations 
describing such flows are the same as those of MHD duct flow (Hunt & Stewart- 
son 1965) but with dpldz = 0, 

j, = - a w x  - v , ~ , ) ,  j ,  = g( - awy) ,  (2.1) 

(2.4) 

(2 .5 )  

where j,, j,, v, and H,, are components of current density, velocity and magnetic 
field, respectively. From (2.3) it  follows that H, may be regarded as a current 
stream function (i.e. that the lines of constant H, are parallel to the current). @ is 
the electric potential. B,, p, i j  are the flux density of the applied magnetic field, 
the magnetic permeability and the viscosity of the fluid respectively. We can 
ignore (2.4) since we do not consider free surfaces and we can rewrite the rest of 
the equations to give two coupled second-order partial differential equations in 
v, and H,. By normalizing in terms of some reference value of H,, HI say, such that, 

v = ( c ~ i j ) * ~ , / H ~ ,  h = H,/H,, ( 2 . 6 )  

and 6 = x/a,  7 = yla where a is some characteristic length, the governing 
equations become : 

a2v a2v ah -+-++M--o, a p  a72 a7 

where M = Boa (g/fj)*, is the Hartmann number. We can rewrite these equations 
in terns of X, ( = v + h) and Y, ( = v - h), as follows: 

(3.9) 

(2.10) 
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2.2. Aligned line electrodes 

We now analyse the flow between two walls at y = + a induced by a current I 
per unit length in the z-direction entering the fluid at  a line electrode (i.e. one of 
vanishingly small width in the x-direction) at x = 0, y = + a  and leaving the 
fluid a t  x = 0, y = -a. A magnetic field is imposed in the y-direction. Let 
HI = &I : then the boundary conditions are: 

vz = 0, f!, = HI,  x > 0, y = +a,  

w = o ,  h = 1 ,  t > o ,  7;1=*1, 

v, = 0, H, = --HI, x < 0, y = + a ,  
v = o ,  ? L = - l ,  [ < O ,  7 = + 1 .  

(2.11) 

//// / / ///y////////// - Current out 

a, with a magnetic field, B,, in the y-direction. 
FIGURE 1. Cross-section of the flow induced by line electrodes at x = 0, y = + a  set in 

insulating planes at y = 

We can rewrite these boundary conditions in terms of X as 

X = l ,  t > o ,  ?jJ=*l ,  

x=-1,  [ < O ,  7 = * 1 ,  
(2.12) 

and therefore we need only consider this combined variable. v and H may be 
found independently from the relations 

4$,?jJ) = 4[X(t17) - X ( t ,  - 711, 

M-17) = %CX(L 7) + X ( L  - 7)l. 

A solution for X may be obtained by Fourier integral methods. It follows from 
the identity 

that the integral representation 
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will satisfy the conditions of (2.12) provided that g( 5 1,a) = 1. Equation (2.9) 
then requires that g has to  satisfy 

(2.13) 

The solution of (2.13) leads to the final solution for X valid for all values of M 
namely 

where p = (aM2+a2)4.  

I 4---------) I 

I 
O(M-') 

I 4 Y J  'I 

(2.14) 

5 ,  1 

FIGURE 2 .  Cross-section of the flow showing the regions between the electrodrs 
analysed in the asymptotic analysis of $2.2 when iM $ 1. 

Asymptotic solution for large M 
As M + m the flow may be examined separately in certain regions. In  each of 

these regions various plausible approximations are made and a complete solution 
constructed, using standard matching procedures, which is consistent with the 
approximations and the boundary conditions. I n  this case the asymptotic solu- 
tion may also be justified by showing that it is equal to the exact solution as 
M --f 03. The advantage of our method of asymptotic analysis is that it demon- 
strates the physical phenomena involved as well as being a method which can 
be applied to situations where an exact solution is not possible. 
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Regions (2a) and (2b) 

8, 9 S,, then in regions (2a) and (2b) 
If the thicknesses of the regions (1)  and (2) are 8, and S,, respectively, where 

3/87 = 0(Sc1) and a/8( = O(Sil)  

and ajar 9 a/8[. Therefore (2.9) becomes 

PX ax 
87, a7 
-+M- = 0. (2.15) 

In  regions (2 a )  and (2 b)  we are looking for ‘boundary layer ’ solutions to (2 .15) ,  
so that the requisite boundary conditions for (2a) are: 

X = l  for x > O ,  7 = 1 ,  

X = - 1  for 5 < 0,  7 = 1, 

X+X,(T = 1) as ( 1 - - 7 ) M + m ,  

where X,(7 = 1) is the value of the solution for region (1)  a t  7 = 1. The only 
possible solution for this region then is 

X,, = 1 for x > 0, 

= - 1  for x < 0 ,  (2.16) 

with XI = 1 for x > 0 and XI = - 1 for x < 0. The boundary conditions for 
(2b) are: 

X,, = 1 for x > 0, 7 = 1,  

X,, = - 1  for x < 0, 7 = -1 ,  

X,b+X,(7 = - 1 )  as (1+7)M-+co.  

To find the solution to this region, we first have to examine region (1). 

Region (1)  

Since the thicknesses of regions (2a)  and ( 2 b )  are small, in region (1) we can 
assume 8/87 = O(1). Since the thickness of region (1) is S,, 8/86 = O(Sil) and 
therefore a/8[ B 8/87. The only value of 8, which enables us to construct a smooth 
solution in region (1)  satisfying the boundary conditions 

X = l , - l  as X - + + C D ,  

X =  1, - 1  at 7 = 1 for ~ $ 0 ,  

is such that a2X/8t2 is of the same order as M aX/87. Thus 8, = O(M--$) and (2.9) 
becomes : 

azx/ap+ M axlay = 0. (2.17) 
The solution to  (2 .17)  is 

X = erf { ,/M/2( 1 - 7)*}. (2.18) 



712 J .  C. R. Hunt and W .  E. Williams 

We can now write down the value for X in ( Z b ) ,  namely 

X Z b  = exp{-M(l+y)}+ [e r f (F) ] [ l -exp{-M(l+y)}]  for x > 0 

= -exp{-M(l+y)}+ [ erf ('::)I ___ [l -exp{ - M(l+y)}] for x < 0. 

(2.19) 
From these solutions we can calculate v and F, separately. 
I n  region (1) 

I n  region (2a )  

2 

v = +{erf [< 4M/2( 1 - 7)*] - erf [< ,/M/2( 1 + y)*]}. 

v = - l - e x ~ ~ - ~ ( l - y ) ~ - ( e r f ~ ~ ) [ 1 - e x p { - ~ ( 1 - ~ ) } 1 ~  ts J M  Y 
= -[ 1 -l+exp{-M(l-y)}-(erfT)[l-exp{-M(l-y)}]) (x < 0). 

v = exp(-M(l +y)}+ ( erf- t ~ ) [ 1 - e a P ~ - M ( 1 + ' 1 ) } 1 - 1 ]  4M Y 
= -( 1 -exp(-~( l+y)}+(er f - ) [1-exp{-M(l+~)) ]+l~  (x < 0). 

(x > o), 

5 JJf 
2 

I n  region (2 b )  

(x > 01, 

c J M  
2 48 

Similar expressions may be derived for h.t  

Regions (3a)  and (3b) 

Both X,, and X,, are discontinuous when < = 0 and thus there exist regions 
near the electrodes where no approximations are possible in (2.9). This implies 
that in these regions all the terms in (2.9) are of the same order and by con- 
ventional scaling arguments it follows that these regions, denoted by 3a and 3b,  
extend a distance O(M-l) round the electrodes. 

In  appendix A we prove that the exact and asymptotic solutions become iden- 
tical in regions (1) and (2) as M -+ co. The asymptotic form of the exact solution 
also gives no information as to the regions (3).  

The best way to understand the physical reasons for the distribution of 
velocity and current is to consider what happens to the current and the velocity 
when the magnetic field is turned on. When there is no magnetic field there is no 
velocity, and as current passes between the electrodes the current spreads out 
from the top electrode at  least a distance of order a before curving back to the 
bottom electrode. Let us now consider the quadrant 5 > 0 , y  > 0 when the mag- 
netic field is applied; the large component of j x B, accelerates the fluid in the 
+ z  direction. However, as v, increases, vaB, increases and thus j ,  decreases. 
Then, since j,B, decreases, the acceleration of v, decreases. This process con- 
tinues until j, is reduced to a value sufficient for thej,B, force to balance the 
viscous stresses produced by v,. 

t It is interesting to note that although we can construct a uniformly valid asymp- 
totic solution for X ,  we cannot do so for v and h separately. 
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Thus, as we see from figures 3 and 4 in the regions (2a) and ( 2 b )  where the 
viscous stresses are greatest, i.e. O(M2) ,  there is a large component of current 
perpendicular to the magnetic field such that 

j x B, = O(M3) .  

I 

.;- 0 1  

-40 -30 -20 -1.0 
I I I I 

1.0 2 0  30 40 
ill i- p + 

-0.1 

- 0 2  

- 0 3  

- 0.4 

-05 

FIGURE 3. Flow between aligned line electrodes; velocity profiles in region (1) at 7 = 0.5 
and 7 -rr 1 (outside the boundary layer). The dotted line indicates how the velocity varies 
in region (3). 

Current I in 

-- 
Current I out 

FIGIJRE 4. Sketch of current streamlines between the aligned line electrodes when M 1. 
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In region (1) however, the viscous stresses are much less, i.e. O(M) ,  and con- 
sequently the current has a smaller component perpendicular to B,. 

It is perhaps worth noting that we can construct a solution for electrodes which 
have a finite thickness, 6 where 6 < a, provided we specify the current distribu- 
tion on the electrode. Then it is easily shown that as cY+ 0 the solution becomes 
that of the line electrodes. Therefore our solution is a limit of that solution 
found by letting the electrode thickness tend to zero. 

2.3 .  Displaced line electrodes: (asymptotic solution) 

We now analyse the flow between two walls when the electrodes are displaced 
sideways by a distance 2 b  (see figure 5). If bla = 1 and HI = +I, the boundary 
conditions are: 

v = Q ,  h = X = l ,  t > k  y = a ,  

v = Q ,  h = X =  - 1 ,  y = a ,  

f >  - 1 ,  y =  -a ,  

t <  -1, y =  -a. 

v and h may be found independently from the relations: 

v=-{ ; x ( 5,r) + X (  - t, - ?1)>, 

h = - {  ; x ( k - , r ) - X ( - E ,  -7)h (2 .20 )  

and it is possible to obtain a Fourier series or Fourier integral solution using a 
similar method to that in 52.2 (see appendix B). We move straight on to the more 
interesting asymptotic solution. 

We will assume that M is large enough to satisfy the condition that aM--k << b. 

* 
FIGURE 5 .  Cross-section of the flow induced by displaced line electrodes at z = 0, y = a 

and x = - b, y = -a, showing the regions of the asymptotic analysis. 
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Then in this situation there is one new type of region not found in the aligned 
electrode problem. This is the region, (4) (see figure 5), where 

1 - O(M-B) > 5 > - 1 + O(M-i ) ,  

1 - O(M-1) > ?I’ > - 1 +O(M-1); 

in other words this region lies between the Hartmann layers on the walls and the 
layers of thickness O(N-4) emanating from the electrodes. In  this region both 
a/@ and a/af are of O(1) and hence the solution of (2.9) consistent with the boun- 

dary conditions is x =  -1. (2.21) 

Therefore v =  -1 , h=O. (2.22) 

The solution for region (1 a) is: 

x = erf[( 5 4 p f  ~ ~ [I. 2( 1 - 71)h 
(2.23) 

and in (1 6 )  x =  -1 .  

Thus X does not change in (1 b )  which is to be expected since X = - 1 in (4) and 
X --f - 1 as <+ - co. 

The solution for (2a) is much the same as for the aligned line electrode, i.e. 

X = l ,  5 > 1 ,  

x=-1, < < l ,  
and the solution for (2b) is 

for ( I - < )  ,/&I! 9 1, this becomes: 

when < < -1 ,  X = -1. 
Thus we again must have two regions (3) with thickness O ( 2 - l )  near the 

electrodes in which a/at  is of the same order as 8/87. 
We see from (2.22) that the major difference between this case and the aligned 

electrode situation is that a net flow is induced. This is simply calculated to be: 

X = -1+2exp{-iM(1+7)), 

or 
(2.24) 

The reason for this net flow is that, since the current must pass between the 
electrodes and since there can be no current in the inviscid core (region (4)), 
because the flow is steady and there is no pressure gradient, all the current has to  
pass along Hartmann boundary layers on the two walls, a current $I along each. 
Now Shercliff (1965) has shown that the relation between the total current flow- 
ing along a Hartmann boundary layer (41 in our case) and the velocity outside it 

V is V = I/(4&j)&, 

whence we can obtain the first term in our expression for Q .  It is important t o  
note that the first term in (2.24) is independent of the value of B,, though if the 
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O(M-+) 

(a)  

boundary layer 

(b )  

FIGURE 6. Flow between displaced line electrodes when M b 1. (a )  Schematic velocity 
profiles in regions (1) and (4) a t  constant values of 7 , ~  = vl, T~ where v 2  > y l .  ( b )  Current 
streamlines, and a velocity profile in region (2). 

eIectrodes were finite, such that there was a finite potential difference A$ between 
them, it would be found that the relation between Q and A$ depends on B,. 
This result was to be expected since Hunt & Stewartson (1965), who examined 
the flow in a rectangular duct with perfectly conducting walls parallel to the 
field, showed that for such a flow when there is no pressure gradient the first 
term in the Q - I relation is independent of B,, whereas the Q - A# relation is 
not. It is also worth noting that the first term in (2 .24)  is the same as that of the 
Q -  I relation for a rectangular duct with sides 2 a  and 2b .  This is to be expected 
since the distribution of current density along the lines x = _C b does not affect 
the first term in (2 .24) .  

3. Aligned point electrodes 
3.1. Exact solution 

The disadvantage of studying flows due to line electrodes is that such flows are 
difficult to produce experimentally. Inevitably at  the end of the container 
enclosing the fluid some recirculation occurs which may upset the flow elsewhere. 
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However, if circular flows are used there are no such end effects, although the 
flow, being more unstable entails other problems. 

t t B o  t 

I 
L A - - 

FIGURE 7. Cross-section of the flow induced by aligned point electrodes 
with a magnetic field, B,, in the z-direction. 

We consider the axisymmetric flow induced by two point electrodes set in 
insulating planes opposite to each other (see figure 7). Such flows inevitably 
induce radial pressure gradients which in turn induce radial flow, but if the 
magnetic field is strong enough, the radial flow is suppressed and the radial 
pressure gradient may be ignored.? We make the same assumption again only 
considering the azimuthal or swirl component of velocity, and the radial and 
axial components of current. Then, in terms of vg and H,, the azimuthal com- 
ponents of velocity and induced magnetic field, the governing equations are: 

Let the current entering the electrode on the wall at z = - a and leaving the 
electrode on the wall at  z = +a, be I, then the boundary conditions are: 

a t  z = +a:  rH,  = I/%, 

v, and H ,  are continuous. 
v, = 0; 

at z = 0:  
We now non-dimensionalize in terms of I :  

(P = r/a, c = z/a) I /( %a)’ I /  (27fag) 
He @ =  - ___~. Q V6 h=- V =  

I/a(@)&’ 
and M = Boa(g/+j)&. Then (3.1) and (3.2) become 

(3.3) 

(3.4) 

t For a more detailed discussion of this point and experimental evidence see Hunt & 
Malcolm (1968). 
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We can rewrite these equations as one in p(v + h) 
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M a  
--(p(v+h))  + --+- -- [p(v+h)]  = 0 
P a< c : z  a;;)) (3.5) 

and the boundary conditions become 

p(v+h) = 1 a t  < =  + 1 .  ( 3 4  

The solution of (3.5) subject to the boundary condition (3.6) may be written in 
terms of Bessel functions: 

where aj = ( j  + +)n, pi = jn, A; = a: + M2/4, ,u; = 

modified Bessel function of the second kind. 
+ M2/4 and K,  (x) is a 

3.2. Asymptotic solution 

As we have found before, the asymptotic solution is simpler and physically 
clearer. Dividing the flow into three regions as in figure 2 with region ( 1 )  lying 
between the electrodes, regions (2a) and ( 2 b )  lying on the two walls, and regions 
(3) extending a distance O(1M-l) round the electrodes, then in regions (2a)  and 
( 2 b ) ,  (3.5) becomes: 

($2+M$)(Av+h)) = 0, (3.8) 

and the solution in (2a) is p(v+h) = 1. 

In region ( l ) ,  a/a< = O(l) ,  a/ap = O(M*) and p = O(M-8) and therefore (3.5) 
becomes 

The boundary conditions are 

p(v+h) = 1 as p+oo andwhen <=  1.  

p(v + h), = 1 - exp { - Mp2/4( 1 - <)I. Thence 

In region ( 2 b ) ,  the solution to (3.8) is 

P ( V  + h ) 2 b  = 1 - exp { - {MP2/[4(1 - <)IB [ I -  exp { - M(1+ <)>I. 
By considering the symmetry of the flow we see that in (l), 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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Though the form of the velocity profile is similar to that for the line electrode, 
the important difference is that in this case 

v = O(M)g,  

whereas for a line electrode, v = O(1). 

We can also deduce this result by an order of magnitude argument. 
In the region (l), 

= Ol-q5,=ol~l, 

where 6 = O(M-6) is the thickness of region (1) and, since at  r = 0, 

$ = O ( I a / m d 2 )  

= O(IM/a) ,  

v, 0 

For a line electrode, at  x = 0, 

and thence 

where I in this case is the current passing between the electrodes per unit length. 
Thus the different values of v, in terms of M result from the much higher poten- 
tial which occurs in the point electrode case than the line electrode case. 

We also note that if the exact solution is examined as M -too, it  may be shown 
to be identical to the asymptotic solution in regions (1) and (2), see appendix C. 

J.C.R.H. would like to thank Professor J. A. Shercliff for originally raising 
his interest in the problem and to the Central Electricity Generating Board for 
supporting him at the University of Warwick while this work was being done. 
Finally J.C.R.H. would like to acknowledge that the manuscript of the paper 
was partly prepared while a visiting lecturer at  the Department of Electrical 
Engineering, University of Cape Town. 

q5 = O [ I a / d ] ,  

vo = O[I /  &rl7 

Appendix A. Asymptotic form of exact solution for aligned line 
electrodes 

For large M the solution X of $2.1 is given by (2.13)) 

where 
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Away from regions of O(M-l)  near the walls 71 = 5 1 the last three terms in 
(A 1) are negligible compared to the first and hence in region 1 

Equation (A 2) may be rewritten, on making the change of variable 

2a = Msinh(x+i$), 

1 m - i $  as 
X - exp {&Ti!( 1 - T)}!  exp { - &Mr coshx} coth (X + i$) dx, (A 3) 

77% - c o A $  

where r2 = (1 -q)2+g2 and tan$ = [/(1-7). The contour of integration in 
(A 3) may now be deformed into the real axis giving 

m 1 

rrt' -" X - _exp {&M(1 -q)}(/ exp ( - +Mr coshx) coth (X +i$) dx 

iH(iCI.)exp{iW1-?)j}, (A 4) 

where H is the Heaviside function. 
The integration in (A 4) appears at first sight to be of a type which may be 

evaluated by the method of steepest descent; however, for small $the integrand 
has a pole near the saddle-point and the steepest descent method must be 
modified. A similar situation occurs in electromagnetic scattering theory in 
evaluating the field variation across the shadow boundary and the necessary 
modification to the steepest descent method has been discussed by Clemmow 
(1950). Application of this modified saddle-point to (A 4) gives 

cos @ 
cos +@ 

X--- [erfc{ - (Mr)* sin &$} - 2H(@)]  f. H( k @). 

Equation (A 5) is valid for all $; however, in region 1 where = O(N-i),  the 
cosines may be replaced by unity and sin&@ by 
repion 

@(I - v)% and hence in this 

(A 6) 

in agreement with (2.16). 

Form in regions (2a )  

Inspection of (A 1) shows that in the neighbourhood of 7 = 1 the dominant 
term is still the first and hence (A 6) is still valid in regions 2a. In  these regions 
however <i?f*/( 1 - v)) is O(M4) and hence the error function may be replaced by 
& H (  f <), in agreement with (2.18). 
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Form in  regions (2b) 

of (A 1) are equally dominant and hence in regions 2b  
I n  the neighbourhood of 7 = - 1 the first three terms on the right-hand side 

m eiag -x-- ’ 1 -- {exp {4M(1- r)> [exp - ((1 - T)P)  - exp {- ( 3  + r)41 
ni - m  a 

+exp{ - &M( 1 + r )  - (1 +r),u}}da. (A 7 )  

The terms on the right-hand side of (A 7 )  are a linear combination of those 
occurring in (A 2) and it follows by inspection of the analysis leading to (A 6) 
that (A 7 )  becomes 

In  the first two terms of (A 8) 7 may be replaced by - 1, also in regions 2b  
&@/( 1 + q)+ is O(M9) and the error function may thus be replaced by +_ H (  6) 
thus giving 

X - + H (  + 5 ) e x p { - M ( 1 + ~ ) } + [ 1 - e x p ~ - M ( l + r ) } l e r f ~ ,  uf+ (A 9) 

which agrees with (2.19). 

Appendix B. Fourier integral for displaced line electrodes 
For the case of the displaced line electrodes of $2 .3  the exact solution for X 

The appropriate asymptotic forms for this case may be derived by an obvious 
extension of the arguments leading to equations (A 6) and (A 9) and are in 
agreement with the results obtained in $2 .3 .  

Appendix C. Asymptotic form of the solution for point electrodes 

the identity (Erdelyi, Magnus & Oberfettinger 1954) 
Replacing the hyperbolic functions in ( 3 . 7 )  by i e x p  (4M)  and making use of 

shows that, for large M ,  

46 Fluid Mcch. 31 
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The summation in (C 1) may be carried out giving 

J .  C. R. Hunt and W .  E. Williams 

where 

Integration by parts and some slight manipulation then gives 

The contour may now be completed by a large semi-circle in the upper half plane 
and the right-hand side of (B 2) may then be replaced by a residue series. The 
integrand has poles at o2 = -p2 - [2(2n + 1) I (1 + g)l2, n integer, these give 
rise to exponentially damped terms in the residue series and the dominant 
contributions arise when n = 0. After some elementary manipulation it follows 
that 

Equation (C 3) is exact in the sense that the terms neglected are everywhere 
exponentially damped compared to those retained and the equation is valid 
everywhere. It is easily verified that (C 3) reduces in the appropriate regions to 
yield the results of $3.2. 
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